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We find the correct quantum modifications of the first-class hamlltoman constraints entenng the super-Polncar6 covanant 
formulation of the Green-Schwarz (GS) superstring of NlssImov, Pacheva and Solomon (harmonic GS superstring) which lead 
to a mlpotent quantum BRST charge. This completes the proof of the quantum consistency of the harmomc GS superstring 

1. In a series o f  recent papers [ 1-4 ] a new physically equivalent formulation o f  the Green-Schwarz (GS)  
superstring [ 5,6 ], called the harmonic GS superstrlng, was developed which allows for a straightforward apph- 
cation of  the BFV-BRST [ 7 ] procedure for a manifestly super-Pomcar6 covariant quantization. The basic fea- 
ture of  this new formulation was the introduction of: 

(i) auxiliary bosonic variables ( V + ~/2, u~ ) ~ (called harmonics since they form a homogeneous space re- 
lated to the "moving light-cone" homogeneous space SO (1 ,9 ) /SO (8) × SO ( 1, l ) [ 8 ] ); 

(ii) additional fermionic string coordinates ~ (A = 1, 2) o f  the Ramond-Neveu-Schwarz  (RNS)  type; 
(iii) additional gauge invariances beyond those o f  the original GS action. 
These ingredients allowed to construct a new harmonic GS superstring action, physically equivalent to the old 

one but possessing BFV-irreducible (i.e. functionally independent) first-class constraints only [ 2,3 ]. Thus, the 
two major problems of  the original GS formalism were solved: 

(a)  covariant disentangling o f  the mixture of  the first-class and second-class parts o f  the fermionic string 
constraints; 

(b) converting the covarlantly disentangled second-class constraints into an equivalent set of  first-class con- 
straints by the Faddeev-Shatashvil i  method [9 ]. (Unless this is done, the presence o f  second-class constraints 
would break manifest space-t ime supersymmetry through nonzero Dirac brackets among the superstring coor- 
dinates X ~, 0A,~ ). 

In the present letter we proceed with the systematic covariant quantization of  the harmonic GS superstring 
and prove the nilpotency of  its properly quantized BRST charge QBRST ~2. 

2. Here we briefly recall the basic formulas o f  the harmonic GS formahsm [2-4  ] and point out the problems 
in the naive at tempt to quantize it. For simplicity, in the present letter we shall restrict ourselves to the formal- 
ism where the x-gauge symmetry (the generalization o f  the original fermionic x-gauge symmetry o f  the GS 
action [ 5 ] ) is covariantly gauge-fixed by OtA, = 0 (see section 4 of  ref. [ 3 ] ). The reason is that this partially 
gauge-fixed covariant formalism captures all the difficulties in the consistent covarlant quantization o f  the har- 

~ The m&ces/~, a are D = 10 Lorentz-vector and Majorana-Weyl spmor ones whereas the indices a = 1,..., 8, + are internal SO ( 8 ) × SO ( 1, 
1 ) ones, where the index a may transform under any one of the fundamental (v), (s), (c) representations of SO(8). 

~2 In parhcular, this result provides a refutation of the recent suspicions raised in ref. [ 10 ] about the quantum consistency of the har- 
monic GS formulation 
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monic GS superstring, and the generalization to the totally unfixed formahsm is straightforward. 
In the covariant x-gauge-fixed formalism, the harmonic GS action reads in hamlltonian (phase space) form 

[ 3 ]  

S = S G s  '~- ~h . . . . . . . .  ( 1 ) 

S o s = I d z i d ~ ( P u O ~ X U + ~ A ( i ~ y ~ O ~ A . - A A T a )  , (2) 
--Tg 

f U a l/2ot O~:V+t/2+p+l/Xa 0r~)gl/2 __AabDab A+-D-+ - +a + - a  a D - A .  0 -a) Sh . . . . . . .  = dz(p.aO~uu+py . (3) 

The auxiliary variables t,, -+ ~/2 a . ~,~ , u u ) strongly satisfy the kinematical constraints 

u a l t u b ' u = C  ab , ua~(l)+-l /2G'uv+-l/2) .~- .O, (v+l/20"ltv+l/2)(v--l/2(7,uv--l/2)..~ --  1 , ( 4 )  

where C ~e denotes the invariant metric tensor in the relevant SO (8) representation space. Due to the famous 
D = 10 Fierz identities the composite Lorentz vectors u ~ = v +- ~/ZaUv +- ~/2 are identically light-hke. 

In (2), (3) AA (~), Aab, ..., A +a are Lagrange multiphers for the corresponding first-class constraints: 

Ta - #A2 + 2i( -- 1 )A ~V~ ~V~, (5) 

~)ab_~ Dab+ ~ i d~Rff ' ,  
-- Tt 

(6) 

1( o o )  _ _  D - + _  v+l/2 _vail2 +a_ + 0 +½V_l/2a+tra 0 
Ov+l/2 Ovyl/2 , D =u u ~ Or_t/2, 

i d ~ ( ~ A )  ~AcRA O-a=--D-a-- ~A + - 1  - a c .  

In eqs. ( 5 ) -  ( 9 ) the following notations are used: 

Dab~bla O'---~--#OUab ~OUuaO "2~k y / ~ +y_ ) _ub + 1 { +,,2 ab 0 l120.a b 0 
0V+ 1/2 OV--I/2 ' 

1 ~ {~)u exp(+in{ ) ~'~(~)=--P**(~)+(--I)AXu'(~)= ~ . . . .  " 

g~b( ~) = ½ ( S°~)c~ ~ ( ~) ~ (  ~) , 

(9) 

0 0 D - - a ~  U g  O~#a q- lld + l / 2 ( y - a a  OV + 1/-""--~' 

( l O )  

( I1 )  

( ~ a b ) c d _ _ l v - - l / 2 l ~ c G a b ( 7 + l T d V - l / 2  , o.ab__l~[ao.b]= , aa_uu u, a + =-u;a+ u, ~--#AU,,.U + (12) 

The 8 × 8 matrices ~ab ( 12 ) are precisely the D = 10 Lorentz-invariant generators of the harmonic SO (8) (c)- 
spinor representation [ 3,4 ]. 

The classical Polsson-bracket (PB) algebra of  the constraints ( 5 ) - (  9 ) reads 

{TA (~), T.(r/) }pB = 8 (  -- 1 )AaAI~[ TA(~)~' (~--rl) + ½T'A(~)5(~--rl) ] ,  {TA(~),/~-a}p. = 0 ,  (13,14) 

--i{]~)--a'I~)--b}pB= A ~ i d~(#+)-2R~4bTA' {TA(~), (f)ab, D-+,D+a)}eB=0 ' (15,16) 
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i{~ab, i~)-C}pa ----- cbc~)-a cac~) -b ,  i{~)ab, ~)Cd}pa = cbc~)ad__ cac~)bd.~ cad~)bc__ cbd~ac, 

l{~)ab, D+C}~ n = C b c D + a c a c o + b ,  {~)ab, D-+}pn = 0 ,  

i{D -+,  D + a } p B = D  +a , i{D -+,  o - a } p B  = - - l ~  - a  , I{D +a, O - b } p B = C a b D - + + [ )  ab . 

(17,18) 

(19) 

(20,21,22) 

We now proceed to the quantization of the constraints ( 5 ) -  ( 9 ) and their algebra ( 13 ) -  ( 22 ). Clearly, difficul- 
ties may arise only in the quantizatlon of T, (~) ( 5 ) and 15-a ( 9 ) and their respective algebra ( 13 ) -  ( 16 ). 

Let us first consider TA(~) (5) and quantlze it by simple normal ordering. Then the quantized version of 
(13) reads 

[:TA(~):, :TB(r/): ] =8i(  -- 1 )A(~AB[:TA(~): t~' (~--q) "~- ½ :T~(~): J ( ~ -  r/) - a o ~ "  ( ~ - q )  ] ,  (23) 

ao=_(1/12n)(lO×l+8×½)=14/12z~. (24) 

Thus, the naive quantization of TA (~) ( 5 ) would lead to conformal anomalies since the ao term in (23 ) cannot 
be cancelled by the conformal ghost contribution: ao(ghost) = -26 /12n .  

Next, calculating the quantum commutator corresponding to (15) with straightforwardly quantlzed (just 
normal-ordered) IS-a (9) we obtain an operator anomaly: 

i i [15-a, IS-b] = -  ~ d~:(N~-)-2~q3bTA : -~E ( - 1  d ~ ( ~ ) - 2 [ : ~ ( ~ ) ' - ( ~ ) ' ~ : ]  

_ _3 Z i d ~ s - ° ~ ( ~ )  ' (25) 
;gA 

1 2 l ) ] }  - ~ ] - ~  ~-~ ~ . (26) 

The first operator anomaly term on the RHS of (25) comes from the KaY-Moody anomaly of the SO (8) gen- 
erators ( 11 ): 

[/23b(~),/~g(?]) ] =t~AB[ CbCRA( ~) --cac~bd(~) Jr cad~bc ( ~) _ cbd~c( ~) ]~( ~-- ?]) 

-- ( -- 1 )A~Ae(i/2n) ( cacc bd- cadcbc)t~ ' (~-- ?l) • (27) 

The second anomaly term (26) on the RHS of (25) arises from Wick contractions in the normal-ordering 
process: 

~'(~-~) ~ . . ~  

--7/ 

] (sab)cd~'lCA(~)~'ld(') d~'{~(~--Y])[0)(-I- (~-,))-o.)(-T- (~ - , ) )  ] } (28) = - 3 i ( - 1 )  a dq ~ + ( ~ ) ~ + ( q )  _ , 
--/t 

where ~o ( + ( ~ -  q) ) - co ( ( - 1 )A + ~ (~_ t/) ) is the Wick contraction function: 

~](~)~b(t/)=C~btO(__+(~--~/)), ~AU(~)~](r/)=2i(--1)Aq ~ o g ( + ( ~ - q ) ) ,  

1 ( ~ e x p [ i n ( ~ - q ) ] + ½ ) .  (29) ~o(~-,~) = ~ .=, 

Regularization of the product of singular functmns in the last line ofeq. (28) uses the following simple identities 
(cf. definition (29)):  
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6 (~- r / )  =~a(¢- r / )  + o g ( r / - ~ ) ,  o 9 2 ( ¢ - r / ) - o 9 2 ( q - ~ ) =  - ( i /2n)0 '  ( G - q )  • (30) 

Inserting (30) into (28) yields the result (26). 
We end up this section with the conclusion that the naive quant~zatlon of TA (~) (5) and f ) -~ (9) leads both 

to conformal and harmonic anomalies. Let us particularly stress that exactly the same situation occurs in the 
Lorentz non-covariant canonical quantization procedure for the GS and RNS superstrlngs when only the fer- 
mionic gauge symmetries are fixed ~3 but the ordinary reparametrization invanance ~s left intact. In this latter 
case the analog of I ) -  ~ is the Lorentz-boost generator J -  ~ (c£ section 4 of  ref. [ 3 ] ). 

3. The solution to the anomaly problem proceeds along the following steps: 
(i) The modification TA (~) of  : TA (~) : ( improved energy-momentum tensor ) by adding an appropriate local 

operator (a total derivative in order to preserve the string spectrum) such that the Vlrasoro algebra (23) is 
preserved modulo a shift of  the anomaly coefficient ao (24) to the value 26/12re needed for cancellation of the 
conformal anomalies m QBRST. 

(ii) The modification ~ - ~  of the quantized harmonic generator I3 -~ by adding an appropriate integrated 
local operator such that the quantum version of (14) 

[TA(~), ~ - a ] = 0  (31) 

holds. 
(iii) The modifications TA (~) and ~ - a  should be such that the quantum commutation relations correspond- 

lng to ( 17 ) -  ( 22 ) remain the same. 
(iv) The modification ~ - ~  should be such that the possible anomaly in [ ~ - a ,  ~ - b ]  is cancelled by the 

compensating anomalous contribution of the ghosts in QBRST" 
We find the following solutions to steps (1) - (n i  ) above: 

d ~ \ ~ + j ,  ~ - ~ = b - ~ + ~  (--1)afA d ~ - - ~ ( ~ ) ,  
- - / t  

where fA is a numerical constant. Indeed, we have 

[T~ (¢), TB(~) 1 = 8i( -- 1 )A~B[ TA (¢)~' (~--q) + ½ T5 (~)'~(~-- ~) - - a  (J)~" (~--q) 1, 

(32,33) 

(34) 

a ( f ) - a o - f a  = 14/12zc+ 1 / n = 2 6 / 1 2 n ,  (35) 

for the particular choice fa = -  1/n. Further, eq. (31 ) is straightforwardly verified inserting the expressions 
(32), (33). 

Let us particularly note that (32), (33) represent the unique solution to tasks ( i ) - ( i i i ) .  In fact, there is one 
more admissible addition to :TA(¢): fulfilhng (i) the operatorgA +" +' - d(~A /~A ) /dCwi thg ,  being a numerical 
constant. It, however, either breaks (31) ( i f g , ~  --2fA) or it does not shift the central charge ao in (23) (if  
gA = -- 2fA ) and, therefore, cannot cancel the conformal anomalies. 

The final step is to compute the modified quantum commutator  corresponding to (25). We get 

#3 (1) Fixing the r-mvanance by a+0A=0 for GS, (Xl) fixing the fermlonlc part of the superconformal lnvanance by ~J- =0 for RNS. 
Here m both cases + denotes the non-covarlant D = 10 hght-cone index 
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- 4 ~  (-1)~(1/n+f~) d~ [ :~3(~) ' - - (~) '~'b: l  

i RA-~b 1~ i ..(RA _ / ~ + , \ 2 q  } 
= -  ~ ~ \ ~ - 7  [ ~ f )  J +3'~;-ab(¢) " 

--n 7~ A --n 

(36) 

Comparing (34), (35) and (36), we see the following remarkable feature. The choice f A = -  1/n in (32) 
cancels simultaneously both the conformal anomalies and the Kar-Moody anomahes in [ @-~, ~ -b ]  (36). Let 
us particularly stress here the role of the space-time dimension D =  10. If we consider a different D ~  10 (where 
the GS superstring exists on the classical level) we can always adjust the coefficient fA in (32) such that the 
conformal anomalies cancel also in D ~  10. However, the coefficient of the KaY-Moody anomaly in (27) is 
universal for all SO ( D - 2  ), hence, cancelling of the conformal anomalies in D ¢ 10 would retain the harmonic 
KaY-Moody anomalies or vice versa. 

What about the operator anomaly still present in the last line of eq. (36)? It turns out that this anomaly is 
cancelled by the compensating anomalous contribution of the ghosts in QBRSX: 
QBRST = Q~t,-,,-,g + Qh . . . . . . . .  

Qstr, ng= A~ i d#Ca(')(TA(')--4i(--1)AC'A({) ~-~A (') ) , 
(37) 

(38) 

Qh . . . . . . .  = i q a  b ~_)ab.jr~+a O_~__l~+ ~O .~_l~_ao~l ~0__0__~]_ b O~aO "~-lTd~bda O --~d~ad 

( 0 o+o +lr /+-  D - + + tl+ ~---~-a+ -- rl~- +ir/a 

+itl+(~)_a+tl_aO O i ~+X-2~+~ab a ) CZ A I ¢l b at'~A at/+ _ - r/ff O---~-~b + ½ ~ de( (39) 

Indeed, squaring QBRST ( 37 ) -  ( 39 ) we get 

=~,la ,Ib ~ - b ] +  ~ d~ ½ { ( ~ + ) - 2 / ~  b , ~PA} 

' i { } = -  2--~r/+r/~- ~ d~ ~,+2L_d~\-~--~-/-\-~-~-- / j+3tA#-ab(~)+,~'-"b(~)]  , 

I ( g ~ % a ~ 5 , ( ~ ) " -  2 _~ 
Zi~'-a~(~) = 2~ += 3 ~,~_____~(~- ),,. 

(40) 

(41) 

The anomalous term (41 ) arises as a result of normal-ordering of the ghost contribution to Q 2RS T : 
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{ g~ (¢), 

i ( - a b R ~  ('ab)c d = dna(g-n) :~+~(~)_(n) : - i ( -1)  A -  ~e~(g)~(n) [to(+-(~-,7))-to(-z-(g-n))] 
--7C 

-4 i ( -  1)a /~b d to( ) ~ -  (~) ~ + (t/) ~--~[ +_ ( ~ -  r/) ) - to(T-  ( ~ -  t/) ) . (42) 

Regularization of (42) is performed by accounting for the short-distance behaviour of (29): 

i to(~_ ~) . ~  (~_~)-1, 

and expanding the operators depending on t/in powers of ( ~ -  t/) around the point ~ to arrive at the result (41 ). 
Now, it is straightforward to check that upon substituting in (40) the explicit expressions (26 ) and (41 ) we 

obtain a complete cancellation of all anomalous terms (coming from the operator anomaly in (36) and from 
the ghosts): 

Q~RST = 0.  (43) 

This completes the proof of the quantum consistency of the harmonic GS superstring [ 1-4 ]. 

4. As a final comment, let us point out that the recently proposed covariant approach to the quantlzed GS 
superstring by Kallosh and Rahmanov (KR) [ 1 l, 10 ], which employs essentially the same auxiliary variables 
(u, v) introduced by the harmonic GS formalism [ 1-3 ], looks more promising for calculations within the Po- 
lyakov functional integral formalism. On the other hand, it does not seem appropriate for covariant operator 
(canonical) quantxzation of the GS superstring because of the following serious problem of KR arising already 
in the zero-mode (superpamcle) limit. 

Among the harmonic constraints of KR, denoted in refs. [ 1 l, l 0 ] by {H, F, K}, there is only one, H -  ÷ - D -  + 
+ ~-~/)+ 1/20"uU+ 1/2. Then it is an (see eq. (7) above), which acts nontrivially on the harmonic light-like vector u u 

elementary exercise to show that the general solution to the Dirac constraint equations for the superfield wave 
function ¢)=O(x, O, u, v) in the KR formalism 

{H}¢=O, {F}¢=0,  {K}¢=0,  (44) 

has the following form in momentum space representation: 

~ ( u ~ , )  (U~(b~ .q (p ,  O) (45) ~(p, 0, u,v)= ~-7 ... p+/  

where p + = uu+ pU =- v + 1/2~u + 1/2 and ¢{a} (p, 0) are an lnfimte number of arbitrary ordinary superfields which 
apparently do not contain among themselves the D = 10 super-Yang-Mills connections A u (x, 0) and A" (x, 0) 
subject to the Nilsson constraints. 

Eq. (45) tells us that the KR harmonic superparticle actually describes an infinite number of unphysical 
supermultxplets, unlike the harmonic N=  1 superpartlcle in our formalism which correctly yields on-shell the 
(linearized) super-Yang-Mills multiplet in D = 10 [ 4 ] which is precisely the physical result obtained in the non- 
covariant light-cone gauge (see ref. [ 6 ], Vol. 2, pp. 238, 239). 

Eq. (45) is the statement about the breaking (on the first-quantized level) of the pure-gauge property of the 
auxiliary harmonic variables in the KR approach [ 11,10 ]. 
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